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We introduce a deterministic model defined on a two dimensional hyperbolic
lattice. This model provides an example of a non random system whose multi-
fractal behaviour has a number theoretic origin. We determine the multifractal
exponents, discuss the termination of multifractality and conjecture the geometric
origin of the multifractal behavior in Liouville quasi-classical field theory.
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I. INTRODUCTION

The concept of multifractality consists in a scale dependence of critical
exponents.(1) It has been widely discussed in the literature in the context of
various problems such as, for example, statistics of strange sets, (2�4, 13) diffusion
limited aggregation, (5) wavelet transforms, (6) conformal invariance.(7) This
concept also proves to be useful in the context of disordered systems.(26, 29)

It was recently found that the ground state wave function of two dimen-
sional Dirac fermions in a random magnetic field has a multifractal
behavior. The field theoretic investigation of the multifractality has been
undertaken in the papers, (8) while different interpretations of these field
theoretic results from a geometrical and physical points of view were
presented in refs. 9 and 10 correspondingly. This problem was recently
reanalyzed in the more general setting of systems caracterized by loga-
rithmic correlations.(26)
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Our work is mainly inspired by the approach developed in ref. 9 where
the authors obtain the multifractal exponents of the critical wave function
by a mapping on the problem of directed polymers on a Cayley tree.
However our starting point is different and we treat a deterministic model
defined on a Cayley tree. We take advantage of the fact that the Cayley tree
can be isometrically embedded in a space of constant negative curvature.
We assume that each vertex of the tree carries a Boltzmann weight that
depends on the hyperbolic distance from a given root point. The corre-
sponding partition function is a sum over a finite number of tree vertices
and has the form of a truncated Poincare� series. Its scaling dependence on
the size of the system is controlled by the probability distribution of traces
of 2_2 matrices which belong to a discrete subgroup of PSL(2, R). This
distribution, obtained by using the central limit theorem for Markov multi-
plicative processes, (31) allows us to compute the multifractal exponents and
discuss the termination of multifractality. The study of the convergence of
the measure on the boundary reveals some interesting links with work of
Gutzwiller and Mandelbrot(13) on multifractal measures. Another interesting,
although more speculative, aspect is connected with a geometric approach
to Liouville field theory arising in the study of low dimensional disordered
systems.(8, 9, 29, 30) We suggest that in two dimensions our model exhibits a
new type of multifractal behavior which has a purely geometric origin.

This paper is organized as follows. In Section II we introduce the
geometrical model possessing the multifractal behavior, develop methods
for its investigation and explicitly show the number theoretic origin of
multifractality; Section III is devoted to applications of these results to
quasi-classical 2D Liouville field theory (LFT); the conclusion presents
some speculations regarding the applicability of our geometric considera-
tions to some other disordered physical systems.

II. THE MODEL

We begin with the investigation of geometrical properties of lattices
uniformly embedded in the hyperbolic 2-space. Lattices under consideration
are defined as follows: we construct the set of all possible orbits of a given
root point under the action of a discrete subgroup of PSL(2, R) (group of
motion of the hyperbolic 2-space). We restrict ourselves with the simplest
example of 3-branching Bethe lattice (Cayley tree) which is generated by
reflections of zero-angled curvilinear triangle��see Fig. 1.

The graph connecting the centers of the neighboring triangles forms a
Cayley tree isometrically embedded in the Poincare� unit disc (a Riemann
surface of constant negative curvature).
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Fig. 1. A Cayley tree in the Poincare� disc. Sample points: A(&i�2), [B, C ](�- 3�7&5i�7),

D(- 3�8&7i�8), E(- 3�4&3i�4).

Consider the n th generation of the vertices of the 3-branching Cayley
tree. Denote by rj (n) the Euclidean distance of the vertex j (which belongs
to the nth generation of the Cayley tree) from the center of the unit disc
(1� j�3_2n&1). The corresponding hyperbolic (geodesic) distance dj (n)
is given by:

dj (n)=ln
1+rj (n)
1&rj (n) \rj (n)=tanh

dj (n)
2 + (1)

Define the generating function Z(q, N )

Z(q, N )= :
N

n=1
\ :

3_2n&1

j=1

e&qdj (n)+ (2)

In a physical context Z(q, N ) may be interpreted as a partition function on
the hyperbolic lattice with an action linear in the length of trajectory.

The Bethe lattice involved can be constructed by the action of the so
called Lambda group3 (here denoted 4) which operates on the unit disc by
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a set of fractional-linear transformations. Despite the simple structure of
the group it is believed that the techniques involved are quite general and
could be easily generalized in order to cover more sophisticated lattices.

We are interested in the scaling dependence of the partition function
Z(q, N ) as a function of the size N of the system. Scaling considerations
suggest the following behaviour

Z(q, N )=L&{ C(q)
N (3)

where in our case LN=3(2N&1) is the total number of Cayley tree vertices
in the bulk restricted by the generation n=N. It turns out that {C(q) can
be regarded as the multifractal exponent of the Gibbs measure e&dj (n). In
order to show this, we briefly recall the general definition of multifractal
exponents introduced in ref. 4. Let &(Ci ) be an abstract invariant distribu-
tion characterizing the probability of a dynamical system to stay in a basin
of attraction of some stable configuration Ci (i=1, 2,..., N). Taking a
uniform covering of these sets by ``balls'' of size l, one defines the family of
fractal exponents {q :

{q=lim
l � 0

ln �N
i=1 &q(Ci )
ln l

(4)

Here we consider the set of Cayley tree vertices restricted by the generation N,
the measure on this set being e&dj (n). It is then quite natural to assume that
the typical ``size'' l of a vertex is given by l=L&1

N . Applying definition (4),
one obtains that {C(q) defined in (3) is exactly the multifractal exponent of
the Gibbs measure e&dj (n) in the limit N � �.

We show below that the critical exponent {(q) defined by {={C ln 2
depends nonlinearly on q i.e., exhibits a multifractal behavior. Note that the
free energy of the corresponding physical system f (q, N )=&(ln Z(q, N ))�N
coincides with the multifractal exponent {(q):

lim
N � �

f (q, N )={(q) (5)

A. Numerical Results

We first compute numerically the histogram, which counts the number
of vertices belonging to generation n (properly normalized), Wn(d ), lying
in the shell [d, d+$d].

In our particular computations we restrict ourselves with two cases
depending on the length of the trajectories:
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Fig. 2. Distributions Wn(d ) up to normalization, compared to their Gaussian fits: one can
notice the slow convergence from strongly nonsymetric regime for n=25 (a) to a Gaussian
regime for n=200 predicted by the central limit theorem (b).

1. Short Trajectories. We enumerate all trajectories and the com-
putations have been carried out for all n # [1, N] up to N=25 generations.
The figure Fig. 2a shows the histogram for the distribution of hyperbolic
distances for n=25. The absolute value of number of events in the Fig. 2a
depends on the particular choice of the width of the shell $. It can be seen
from Fig. 2a that the corresponding plot is highly nonsymmetric with
respect to the mean value (d ) .

2. Long Trajectories. For n=200 the enumeration of all different
paths is very time consuming, therefore we compute numerically the
histogram Wn(d ) developing partial ensemble of 200 000 directed random
walks of n=200 step each. As n � � the distribution function Wn(d )
becomes more and more symmetric in accordance with the statement that
there exists a central limit theorem for such random walks on noncom-
mutative groups (see the discussion below). The results of corresponding
numerical computations are presented in Fig. 2b. The distribution Wn(d ) is
well fitted by a Gaussian function:

Wn(d )=A0 e&(d&(d ) )2�222

where for n=200 one has: A0r1929.96 and depends on normalization;
(d ) r159.18; 22

r17.01.

In spite of the fact that convergence to the Gaussian distribution is
slow, the linear dependence in n of the mean value (d ) =#n and the
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Fig. 3. Multicritical behavior of the exponent {(q) for N=40, compared to theoretical
prediction.

variance ( (d&(d ) )2)#22=_2n is numerically clear, which permits one
to get an accurate estimate of # and _2.

The numerical computation of the probability distribution Wn(d )
allows one to compute the multifractal exponent {(q) following the defini-
tions (3)�(5). The corresponding results are shown in Fig. 3, for N=40.
Due to the slow convergence of the distribution, the discrepancy between
numerical data (technically limited to N�40) and the theoretical prediction
can not be quantitatively taken into account. We here insist on the multi-
fractal behaviour, shown by the non-linear dependence on q.

B. Analytic Results

Let us return to the definition of the model and recall that the group
4 acts in the hyperbolic Poincare� upper half-plane H2=[z # C, Im(z)>0]
by fractional-linear transforms.4 The matrix representation of the gener-
ators of the group 4 is well known (see, for example, ref. 24), however for
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our purposes it is more convenient to take a framework that consists of the
composition of standard fractional-linear transform and complex conjugacy.
Namely, denoting by z the complex conjugate of z, we consider the following
action

\a
c

b
d+: z �

az� +b
cz� +d

(6)

A possible set of generators is then:

h0=\1
0

&2�- 3
&1 + , h1=\1

0
2�- 3
&1 + , h2=\ 0

- 3
1�- 3

0 + (7)

Choosing the point (x0 , iy0)=(0, i ) as the tree root��see Fig. 4, any vertex
on the tree is associated with an element Mn=>n

k=1 h:k
where :k # [0, 1, 2]

and is parametrized by its complex coordinates zn=Mn((&1)n i ) in the
hyperbolic plane.

Strictly speaking H2 should be identified with SL(2, R)�SO(2); we
here identify an element with its class of equivalence of SO(2). If one
denotes by d(Mn)#d(i, zn) the hyperbolic distance between i and zn , the
following identity holds

2 cosh(d(Mn))=Tr(MnM -
n) (8)

where dagger denotes transposition.

Fig. 4. Poincare� hyperbolic upper half-plane H2.
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1. Distribution Function, Invariant Measure on the Boundary,
and Lyapunov Exponents

We are interested in the distribution function Wn(d ) which is the
probability to find the tree vertices in generation n at the distance d from
the root point. It means that we are looking for the distribution of the
traces for matrices Mn which are the irreducible products of n generators.
If we denote by l(Mn) the irreducible length of the word represented by the
matrix Mn , then Mn is irreducible if and only if l(Mn)=n. Such word
enumeration problem is simple in case of the group 4, because of its free
product structure: 4tZ2�Z2 �Z2 . Indeed, if Mn=>n

k=1 h:k
one has

l(Mn)=n if and only if h:k
{h:k&1

\k. Hence we have to study the behavior
of the random matrix Mn , generated by the following Markovian process

Mn+1=Mnh:n+1
with :n+1={(:n+1) mod 3

(:n+2) mod 3
with probability 1

2

with probability 1
2

(9)

We use the standard methods of random matrices and consider the entries
of the 2_2-matrix Mn as a 4-vector Vn . The transformation Mn+1=Mnh:

reads

Vn+1=\h-
:

0
0

h-
:+ Vn (10)

This block-diagonal form allows one to restrict ourselves to the study of
one of two 2-vectors, composing Vn , say vn . Parametrizing vn=(*n cos %n ,
*n sin %n) and using the relation d(Mn)#dn &2 ln *n valid for n>>1, one
gets a recursion relation vn+1=h-

:vn in terms of hyperbolic distance dn :

dn+1=dn+ln[ 5
3+ 4

3 cos(2%n+.:)] (11)

where .: depends on the transform h: through .:=(2:&1) ?�3 (:=0, 1, 2),
while for the angles one gets straightforwardly

tan %n+1=h:~ (tan(%n)) (12)

and the change : � :~ means the substitution (0, 1, 2) � (1, 0, 2). Action of
h: is still fractional-linear.

Define now three invariant measures +:(%) corresponding to matrices
Mn (n>>1) such that :n=:. Namely, +:(%) gives the asymptotic probabil-
ity to have %n=% under the condition that the last step is :n=:. The form
of (12) suggests to consider the corresponding +:(x) with x=tan %. We are
then led to study the action of 4 restricted on the real line parametrized
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by x. Interesting properties of the average +� =(+0++1++2)�3 (which is the
global asymptotic probability to have %n=%) have been discussed by
Gutzwiller and Mandelbrot.(13) In particular they pointed out the connexion
with the arithmetic function ;(!) which maps some number ! # [0, 1] written
as a continued fraction expansion

1

n1+
1

n2+ } } }

to the real number ; whose binary expansion is made by the sequence of
n1&1 times 0, followed by n2 times 1, then n3 times 0, and so on. To
account for this fact, one has first to notice that the construction (9) of any
word M in 4 is exactly encoded by the binary representation of a real !,
the n's letter of this expansion being :n+1&:n+1 mod 3. The second argu-
ment, due to Series, (14) is that the real part of the vertex M(i ) is precisely
the continued fraction +(!). Therefore ;(!) has to be proportional to the
``number'' of vertices lying in the interval [0, !], that is to +� ([0, !]).
Taking the limit n � � is not well defined. An alternative, which was used
in this work, is to define +:(x) as the limit of the following recurrency
(which can be viewed as the probability conservation equation):

+ (n+1)
: (x)=

1
2 }

dh:(x)
dx } :

:${:

+ (n)
:$ (h:$(x)) (13)

The symmetry of such expression leads, after summing over :, to the
following relation admitting as fixed point +� (x) at n � �:

+(n+1)(x)=
1
3

:
2

:=0

+(n)(h:(x)) } dh:(x)
dx } (14)

The convergence +(n)(x) � +� (x) for n � � is assured by ergodic
properties of such functional transform in case of Eq. (14), and has been
successfully checked numerically by comparing to direct sampling of dif-
ferent orbits. Obtaining +: for :=[0, 1, 2] from +� is not difficult, taking
into account the symmetric role that they play with respect to the three
intervals I0=]&�, &1�- 3], I2=[&1�- 3, 1�- 3], I1=[1�- 3, +�[
(see Fig. 5). Contracting properties of h:(x) allow convergence of (14) only
if

+:(x)=3/I:
(x) +� (x) (15)

where /I:
is the characteristic function of the interval I: .
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Fig. 5. Invariant measure +� as a function of %.

We would like to point out an interesting fact, even if far from being
rigorous, which is very similar to the argument put forward in ref. 13 for
justifying the connexion between the invariant measure and the arithmetic
function ;(!). It has been shown in ref. 23 that the lattice under consideration
can be isometrically embedded in a 2-manifold M=[c |'(z)| 4, z # H2],
where

'(z)=e?iz�12 `
�

n=1

(1&e2?inz)

is the Dedekind '-function. The mountain range (relief ) M displays a very
steep valley structure, and our tree lattice was defined as the ridges of this
relief. The natural ``counting'' of vertices whose real part lies in [0, !] in
ref. 13 is in our case equivalent to counting the number of maxima of
|'(x+i0+)|4, that can be directly reexpressed as a density if one admits
that all maxima are equivalent and well separated:

+� (x)t
|'(x+i0+)|4

�1
0 |'(t+i0+)|4 dt

(16)

The intriguing fact is that '4 is an automorphic form of weight 2, what
makes |'| 4 precisely a possible fixed point of Eq. (14). We recall the
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fundamental property of automorphic forms f of weight 2 under the action
of SL(2, R):

f (z)=
ei,(a, b, c, d )

(cz+d )2 f \az+b
cz+d+ (17)

The main problem is that the boundary behavior of automorphic forms is
far from trivial (see ref. 28), and (16) has no rigorous mathematical sense.
In particular compatibility of (14) and (16) is not obvious even numeri-
cally. Nevertheless we insist on the fact that +k is defined with no ambiguity
by (14), what enables us to compute the desired Wn(d ). The crucial point
here, already required for convergence of +(n), is ergodicity property of %n .
It means that for n>>1, the distribution of %n is exactly given by +� (%),
independently of n and initial condition. Using these distributions, one can
therefore transform (11) and average in the following way:

(eikdn+1)=(eikdn)([ 5
3+ 4

3 cos(2%n+.l )] ik) (18)

with the condition l{:n . Thus we obtain

(eikdn) =_ 1
6 :

2

j=0

:
l{ j

|
?�2

&?�2
d% + j (%)( 5

3+ 4
3 cos(2%+.l )) ik&

n

(19)

which finally leads to

Wn(d )=
1

2? |
�

&�
dk e&ikd _|

?�3

0
d% +1 \%&

?
6+\

5
3

+
4
3

cos 2%+
ik

&
n

(20)

This form suggests that for n large Wn(d ) satisfies a central limit theorem.
Indeed such a theorem exists (see refs. 25 and 31) for Markovian processes,
provided that the phase space is ergodic. We are then led to compute only
the first two moments (Lyapunov exponents) which gives

#=
(d )

n
=|

?�3

0
d% +1 \%&

?
6+ ln \5

3
+

4
3

cos 2%+r0.792 (21)

and

_2=
( (d&(d ) )2)

n
=#2&#2 (22)

with

#2=|
?�3

0
d% +1 \%&

?
6+ ln2 \5

3
+

4
3

cos 2%+r0.68 (23)
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Numerical simulations presented in previous section yield #r0.793 and
#2r0.66, which finally allow us to conclude that for n>>1 Wn(d ) has a
Gaussian behavior

Wn(d )=Ae&(d&n#)2�2_ 2n (24)

centered at #n and of variance _2n (A is the normalization).
The numerical values of the Lyapunov exponents # and #2 (see

Eqs. (21) and (23)) are obtained by means of semi-numerical procedure
which involves the numerical information about the invariant measure
+1(%). However one can get the estimates for the Lyapunov exponents #
and #2 by approximating the measure +1(%) on the interval 0�%�?�3 in
two different ways:

+1 \%&
?
6+r+A

1 (%)=
3
?

(25)

+1 \%&
?
6+r+B

1 (%)=
3
2

sin(3%)

Both measures +A
1 and +B

1 are properly normalized on the interval [0, ?�3].
Substituting (25) in (21) and (23) and computing (analytically for #) the
corresponding integrals, one finally gets:

+A
1 : { #r0.749

#2r0.665
+B

1 : { #r0.792
#2r0.684

(26)

As one can see, the agreement between numerical values of Lyapunov
exponents obtained for the measures +1 and its approximants +A, B

1 is
reasonable for +A

1 and very good for +B
1 .

2. Multifractal Exponents

The partition function Z(q, N ) introduced in (2) can be defined for
any discrete subgroup of PSL(2, R) of generic element { by

Z(q, N )= :
{, l({)�N

e&qd({) (27)

and the associated critical exponent is then

{(q)=& lim
N � �

ln Z(q, N )
N

(28)
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The probability distribution (24) enables us to rewrite (27) for the
group 4 in the limit n>>1 as follows

Z(q, N )= :
N

n=1

3_2n&1an (29)

where

an=|
�

0
e&qtWn(t) dt=|

�

0
Ae&(t&n#)2�2n_2e&qt dt (30)

The following two cases should be distinguished:

v For q<#�_2, the minimum of the exponent in Eq. (30) is within the
range of integration and

ante&n#q+n_2q2�2 (31)

hence

Z(q, N )t
3
2 :

N

k=1

ek(ln 2&#q+_2q2�2) (32)

The convergence of the sum (32) for N � � depends on the sign of the
function in the exponent. For

q<q0=
#&- #2&2_2 ln 2

_2 (33)

one has &ln 2+#q&_2q2�2>0 and the multifractal exponent is

{(q)=&ln 2+#q&_2q2�2 (34)

while for q>q0 , the series Z(q, N ) converges and {(q)=0 what signals the
termination of the multifractality. Note that q0 is real at least in the case
of the group 4.

v For q>#�_2 the minimum of the exponent in Eq. (30) is out of the
range of integration and

ln ant&
n#2

2_2 (35)

hence Z(q, N ) is no longer extensive in N, which leads to {(q)={(q0)=0.
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Table I. Multifractal Exponent

q<#�_2

q<q0=
#&- #2&2_2 ln 2

_2 {(q)=&ln 2+#q&_2q2�2

q>q0=
#&- #2&2_2 ln 2

_2 {(q)=0

q>#�_2 {(q)={(q0)=0

The nonlinear dependence on q obtained above shows the multifractal
behaviour of this model below the termination point q0 . All these results
are summarized in Table I. We here should mention that using the central
limit theorem restricts the validity of the result (34) to small values of |q|.
Indeed, as pointed out in ref. 17, even if Wn(d ) uniformly converges to a
Gaussian distribution, high moments of the quantity ed can be quite dif-
ferent from the ones obtained through the Gaussian approximation. This
directly affects the regime q<<&1. As an example, the study of hyperbolic
elements of 4 shows that for any n, Wn(d>;n)=0, ; being a positive con-
stant. One then straightforwardly obtains (for q<0)

an<e&q;n (36)

which then gives

{(q)>&ln 2+;q (37)

which is in contradiction with (34) for |q| large enough.

3. Conformal Mapping Approach to Computation of Partition Function
and Multifractal Exponent

We propose in this section a completely different approach allowing
to get a closed analytic expression for the partition function similar to
Z(q, Nmax) (see Eq. (2)). The construction presented below is a by-product
of our former investigations of analytic structure of the covering Riemann
space of the multi-punctured complex plane (see, for review, ref. 22). We
explore the properties of the Jacobian of conformal mapping of the infinite
complex plane with a triangular lattice of punctures into the unit disc
parametrized by w=rei:, which in this particular case represents the multi-
sheeted universal covering space.(22) Namely, we define two functions
f (r, :) and g(r):

f (r, :)=c
|%$1(0, ei?`(w))| 8�3

|1+iw|4 #c
|'(`(w))| 8

|1+iw| 4 , g(r)=
1

(1&r2)2 (38)
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where

%$1(0, ei?`)=2ei(?�4) ` :
�

n=0

(&1)n (2n+1) ei?n(n+1) `

{`(w)=e&i?�3 w+ei?�6

w&i
(39)

c=|%$1(0, ei?`(0))| &8�3
r0.933293

One can show that the functional equation

f (r, :)
g(r)

&1=0 (40)

has a family of solutions (rc , :c) exactly at positions of 3-branching Cayley
tree isometrically embedded in the hyperbolic unit disc (in the Klein's
model of the surface of constant negative curvature). In Fig. 6 we have
plotted the 3D section of the function

u(r, :)=
f (r, :)
g(r)

(41)

in polar coordinates (r, :) for 0.9<u(r, :)�1. The function u(r, :) has
local maxima with one and the same value u=1 only at the coordinates of

Fig. 6. 3D parametric plot of the function u(r, :) in the section 0.9<u(r, :)�1.
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isometric embedding of 3-branching Cayley tree in the hyperbolic unit disc.
The proof of this fact is given in Appendix A.

Thus, we can rewrite (2) in the following closed form (recall that
Euclidean distance r and the corresponding hyperbolic distance d are
linked by the relation (1))

Z� (q, d )=
1

2? |
r(d )

0
|

2?

0
e&q ln[(1+r)�(1&r)] $(ln u(r, :)) } d ln u(r, :)

dr } r dr d:
(42)

where for $[ln u(x)] we use the standard integral representation $[ln u(x)]
=(1�2?) ��

&� d![u(x)]i!.
It is noteworthy to pay attention to the difference between the parti-

tion functions Z(q, N ) (Eq. (2)) and Z� (q, d ) (Eqs. (27) and (42)). The
function Z(q, N ) counts the weighted number of Cayley tree vertices up to
the generation N for nonfixed maximal radius r(d )=tanh(d�2) in the hyper-
bolic unit disc, while the function Z� (q, d ) counts the weighted number of
Cayley tree vertices within the hyperbolic disc of radius r(d ) for nonfixed
maximal generation N. The last partition function is in fact related to the
number of tree vertices inside the disc of radius d. This is the content of the
famous circle problem first formulated by Gauss for the Euclidean lattice Z2.
The extension to the non-Euclidean case is due to Delsarte(32) (see also
ref. 19).

III. MULTIFRACTALITY IN 2D QUASI-CLASSICAL LIOUVILLE
FIELD THEORY

Our starting point is the family of normalized wave functions �k(x)
defined as follows

�k(x)=
|x| k e&.(x)

[� dx |x|2k e&2.(x)]1�2 (43)

where integration extends to a disc of radius R and the potential .(x) is
distributed with Gaussian distribution function

P[.(x)] B exp {&
1

2g | dx({.(x))2= (44)

The problem defined in (43)�(44) appears in various models which will be
discussed in the next section.
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The ``quenched'' and ``annealed'' multifractal exponents5 can be com-
puted in the standard way

{qu(q)=& lim
R � �

( ln Q(q, R))
ln R

for quenched disorder

(45)

{an(q)=& lim
R � �

ln (Q(q, R))
ln R

for annealed disorder

where Q(q, R)=� dx |�k(x)|2q and the brackets ( } } } ) denote averaging
with the distribution P[.(x)].

We pay attention to the case of annealed disorder and our aim is to
evaluate the correlation function

(Q(q, R)) =| dx( |�k(x)| 2q) (46)

The averaging ( } } } ) in (46) means

( } } } ) S[.]=| D[.(x)] e&S[.(x)] (47)

where

S[.(x)]=
1

2g | dx[({.(x))2] (48)

In order to take into account proper normalization of the wave
function �k(x) it is convenient to use a Lagrange multiplier *, so that
eventually

(Q(q, R)) =| dx0 | D[.(x)] e&2q(.(x0)&k ln |x0 | )e&Sk [.(x)] (49)

where

Sk[.(x)]=
1

2g | dx {({.(x))2+2*g \ |x|2k e&2.(x)&
1

?R2+= (50)

is the action of 2D Liouville Field Theory (LFT).
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The careful treatment of the quantum LFT in the case k=0 (see for
review, ref. 15) enables one to find the conformal weights 2(e&2q.)=
q(Q&q), where Q(g) is the ``background charge,'e obtained by imposing
conformal invariance of S0[.]. The authors of work(8) have related the
value 2(e&2q.) to the critical exponent {an(q) in the scaling dependence of
the average inverse participation ratio (46)

(Q(q, R)) tR&{an(q) (51)

Despite the multiscaling exponent {an(q) has been computed in the
general framework of Conformal Field Theory (CFT) few years ago, from
our point of view, the geometrical interpretation of the multifractal behavior
in the model has not yet been cleared up. A more physical approach put
forward in ref. 9 exploits an analogy between this model and the problem
of directed polymers on a Cayley tree. This analogy is supported by the fact
that in both cases the correlation functions grow logarithmically with the
distance. For directed polymers it is the correlation function of the random
potential defined on the tree vertices that scales logarithmically with the
ultrametric distance (i.e., distance along the tree). The same logarithmic
behaviour occurs in 2D Gaussian Field Theory.(8)

We adopt a different point of view. We notice that the tree structure
(conjectured by C. Chamon et al.) emerges quite naturally from the Liouville
field theory treated at a semiclassical level. Our idea is as follows. Indeed
there is not just one saddle point solution but a whole orbit of solutions
parametrized by SL(2, R). If one further assumes that the integration has
to be performed not over the whole group but only over a subgroup (for
instance 4), one recovers quite naturally the model defined in Section II.

Our starting point is the semi-classical (g � 0) treatment of (49)
(a similar approach can be found in ref. 20). Using a saddle point method,
one is led to the classical equation

2.&2qg$2(x&x0)+2*g |x|2k e&2.=0 (52)

which gives, after integration

*=q&F�2g (53)

where

F=| dx 2.
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is the magnetic flux. We then introduce the shifted field

.~ (x)=.(x)&ln |x|k (54)

and taking into account that

2.~ (x)=2.(x)&2?k$2(x) (55)

we end up with the following equation

2.~ +2?k$2(x)&2qg$2(x&x0)+(2qg&F ) e&2.~ =0 (56)

The most general solution of (56) (away from singularities) in Euclidean
space of complex coordinate z can be written as follows(15)

e&2.~ =
4

|F&2qg|
�zA(z) �z� B(z� )

(1+=A(z) B(z� ))2 (57)

where A(z) and B(z� ) are correspondingly holomorphic and anti-holo-
morphic functions of z and ==sign(F&2qg). The semi-classical treatment
assumes g to be small, hence in order to have real .~ in Eq. (57) we should
put ==1, i.e., q<<F�2g. The relevant solution of (57), compatible with the
singularities, reads

e&2.~ cl (z)=
4(k+1)2

F
(zz� )k

(1+(zz� )k+1)2 (58)

The normalization condition of the wave function is then satisfied only if
F=4?(k+1). We would like to stress that for k=0 we here recover the
critical value 4? of the magnetic flux: uniqueness of the ground state wave
function holds only below this value. It also should be mentioned that our
analysis does not depend on a peculiar basis of eigenfunctions and the
results presented here can be extended to wave functions of the form
�(z)=Pk(z) e&.(z), Pk being a polynomial of degree k. It is noteworthy
that (58) is an algebraically decaying wave function, what is, following
ref. 8, a signature of the existence of prelocalized states.

Using the fact that the Liouville field is not exactly a scalar but varies
under holomorphic coordinate transformations z � w(z) as

.~ (z) � .~ (w(z))&ln |w$(z)| (59)
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one can check that the set of solutions (58) is invariant under the following
family of transformations, parametrized by the group PSL(2, C):

z � wk(z; a, b, c, d )=\azk+1+b
czk+1+d +

1�(k+1)

(60)

The orbit of .~ cl (z) is then given by

.~ cl (z; a, b, c, d )=
1
2

ln \?( |azk+1+b|2+|czk+1+d |2)2

(zz� )k + (61)

Up to redefinition of the measure d{ on PSL(2, C), we restrict the domain
of integration to PSL(2, R).

Due to the angular symmetry of (58), we take points of the form
z=i 1�(k+1)\ (\ # R), and following ref. 20 we rewrite (46)�(48)

(\2qke&2q.(\)) Sk [.]=R&4?(k+1)2�g Det _$2Sk

$.2 &
&1�2

|
PSL(2, R)

e&2q.~ cl (\, {) d{
(62)

Let us denote

{=\a
c

b
d+ and &\=\\(k+1)�2

0
0

\&(k+1)�2+ (63)

then we can rewrite (62) as follow

(\2qke&2q.(\)) Sk [.] B \&2q |
PSL(2, R)

e&2q ln Tr[({&\)({&\)-] d{=\&2qI(\, q)

(64)

where we have got rid of irrelevant factors and the function I(\, q) reads

I(\, q)=|
PSL(2, R)

[2 cosh d(i, {&\(i ))]&2q d{ (65)

Instead of summing over the whole group PSL(2, R), we restrict the
sum over a discrete subgroup, 4 in our case. Even if this discretization
of the saddle manifold has no evident physical justification, we believe
that the model obtained yields interesting results. It leads to consider the
so-called Poincare� series (see ref. 27 for review) H, defined as follows

I(\, q)=H(i, &\(i ), q)= :
{ # 4

[2 cosh d(i, {&\(i ))]&2q (66)
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As shown in ref. 27, the series H does not converge for q<qC with qC

depending on 4 only (the analysis of the previous sections show that we
roughly may set qC &q0 �2). A new dependence on \ occurs only if H does
not converge, we will therefore consider only this regime. We must intro-
duce in this case a cut-off N to regularize the series, and finally study
asymptotics of the finite sum

IN (\, q)=HN (i, &\(i ), q)= :
{ # 4�l({)�N

[2 cosh d(i, {&\(i ))]&2q (67)

This Poincare� series has the same asymptotic properties as the one
that defines our model. In particular it will exhibit a multifractal behaviour
in N. However what really matters for a physical system is the multifractal
behaviour under transformations parametrized by \. We therefore have to
relate the behaviour in the group manifold to the behaviour in the real
space. This will be achieved through a renormalization transformation of
the form

IN (\, q)=C\}IN$(N, \)(1, q) (68)

Appendix B provides a heuristic derivation which gives

IN (\, q)=C\&(k+1) ln 2�#IN+(k+1)�# ln \(1, q) (69)

Comparing (27) and (66) gives IN (1, q)rZ(2q, N). Therefore

IN (\, q)=C\&(k+1) ln 2�#Z \2q, N+
k+1

#
ln \+ (70)

This relation allows to extract the scale dependence in \ for a given cut-off N.
Using the asymptotics of Z obtained in previous sections yields

(\2qke&2q.(\)) Sk [.] B \&2q&(k+1) ln 2�#\&[(k+1)�#] {(2q) (71)

with the notations of previous sections. After integrating over the whole
domain we arrive at the final expression for the multifractal exponent
{an(q):

{an(q)=& lim
R � �

ln (Q(q, R))
ln R

=2(q&1) \1&
(k+1) _2

#
q+ for q<q0 �2 (72)
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with q0 defined in (33). The regular term 2(q&1) corresponds to the one
obtained in ref. 9 for g � 0. Multifractality of the wave function is induced
by the quadratic term, which is directly related to geometric properties of
the saddle point hyperbolic manifold (target space), and holds in absence
of any random potential in this target space. The regime q>q0 �2 is not
affected by these geometric properties.

IV. CONCLUSION

The wave function �k(x) introduced in (43) belongs to the general
class of exponential functionals of free fields. Such functionals appear in
several physical contexts.

1. The square of the wave function (for k=0) may be interpreted as
the equilibrium Gibbs measure in the random potential .(x). In the 1D
case the problem was first studied in ref. 33. A rather deep and complete
analysis of this problem was recently presented in ref. 26.

2. Exponential functionals of free fields play an important role in the
context of one dimensional classical diffusion in a random environment.
Their probability distribution controls the anomalous diffusive behaviour
of particles at large time.(34) They also arise in the study of disordered
samples of finite length.(35, 30) Some mathematical properties are discussed
in ref. 36.

3. In the context of one dimensional localization in a random poten-
tial such functionals arise in the study of the Wigner time delay.(37)

4. The function �k(x) is the ground state wave function of 2D Dirac
fermions in a random magnetic field with B=2.. The multifractal behaviour
first conjectured in ref. 8 has been recently confirmed by an independent
investigation based on renormalization group method.(26) The scenario of
multifractality which is presented here relies mainly on a geometric
approach to a semiclassical quantization scheme of the Liouville field
theory. The fact that tree like structure emerges quite naturally in our
consideration is an interesting feature which obviously deserves further
investigation. The multifractality in our approach appears as a by-product
of isometric embedding of a Cayley tree in the hyperbolic plane. The objects
which possess multifractal behavior are the moments of the partition function
defined as sums over all vertices of a Cayley tree isometrically embedded
in the hyperbolic plane where each vertex carries a Botzmanm weight
depending on the hyperbolic distance from the root point. No randomness
is imposed in the model.
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From the mathematical side our work reveals some interesting links
between the theory of automorphic functions, invariant measures and
spectral theory. We hope to return to these problems in a forthcoming
publication.

APPENDIX A

Let us prove that the function u(w)=(1&ww� )2 f (w) where f (w) is
defined in (38) has the following properties:

v At all centers w=wc of zero-angled triangles tesselating the Poincare�
hyperbolic unit disc u(wc)=1;

v The function u(w) has local maxima at the points wc .

I. The proof of the first statement implies the proof of the fact that
the function u(w) is invariant with respect to the conformal transform
w(1)(w) of the unit Poincare� disc to itself where

w(1)(w)=
w&w0

ww� 0&1
(A1)

and w0 is the coordinate of any center of zero-angled triangle in the hyper-
bolic Poincare� disc obtained by successive transformations from the initial
one.

Hence, it is neccessary and sufficient to show that the values u(w=0),
u(w=&i�2), u(w= 1

2 ei?�6) and u(w= 1
2 e i5?�6) coincide. Then, performing the

conformal transform and taking w0=[&i�2, 1
2 ei?�6, 1

2 ei5?�6], we move the
centers of the first generation of zero-angled triangles to the center of the
disc w(1). Now we can repeat recursively the contruction, i.e., find the new
coordinates of the centers of the second generation of zero-angled triangles
in the disc w(1) and compute the function u(w) at these points, then we
perform the conformal transform w(2)(w(1)) and so on...

We have at the point w=0:

u(w=0)=c |%$1(0, ei?[1�2+i - 3�2])|8�3=1

while at the point w=&i�2 the function u(w) can be written in the form

u \w=&
i
2+=

c
|1& 1

2 e&i?|4 |%$1(0, ei?[1�2+i�(2 - 3)])| 8�3 \1&
1
4+

2

(A2)
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Let us use the properties of Jacobi %-functions:

{%$1(0, ei?(w+k))=%$1(0, ei?w);
%$1(0, ei?[1�2+i�(2 - *)]) *&3�4=%$1(0, ei?[1�2+i - *�2]);

k # N
* # R

(A3)

Taking into account (A3) we can rewrite (A2) in the form

u \w=&
i
2+=

24c
34 (33�4)8�3 |%$1(0, ei?[1�2+i�(2 - 3)] 3)|8�3 \3

4+
2

=c |%$1(0, ei?(1�2+i - 3�2)+i?)|8�3=1 (A4)

Thus, u(w=0)=u(w=&i�2)=1.
At the point u(w= 1

2 ei?�6) we have

u \w=
1
2

e i?�6+=
24c
32 |%$1(0, e i?[3�2+i - 3�2])|8�3 \1&

1
4+

2

=c |%$1(0, ei?[1�2+i - 3�2]+i?)|8�3=1 (A5)

In the same way we can transform the function u(w= 1
2 ei5?�6):

u \w=
1
2

ei5?�6+=
24c
32 |%$1(0, ei?[&1�2+i - 3�2])|8�3 \1&

1
4+

2

=c |%$1(0, ei?[1�2+i - 3�2]&i?)| 8�3=1 (A6)

The transforms (A4)�(A6) complete the proof of the part I.

II. Let us prove that the function u(w) has local maxima at all
centers wc of zero-angled triangles tesselating the Poicare� hyperbolic disc.
Actually, the function f (w) by construction gives a metric of some discrete
subgroup of the group of motions of Poicare� hyperbolic disc. Hence the
function f (w) cannot grow faster than the isotropic hyperbolic metric
(1&ww� )2 and the following inequality is valid

0<u(w)�1

for all points w inside the unit disc. But we have shown that u(w)=1 at
w=wc what means that the function u(w) reaches its local maxima at the
points wc and at all these maximal points the function u(w) has one and
the same value u(wc)=1. The part II is proved.
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APPENDIX B

Our aim is to extract explicitly the \-dependence of the truncated
series (67) and to connect it to I(1, q). More precisely we are looking for
a renormalization transformation of the form

IN (\, q)=C\}IN$(N, \)(1, q) (B1)

Using the correspondance (up to the volume of SO(2)) between
PSL(2, R) and H2, we interpret the shift { � {&\ as a change of hyperbolic
coordinates��see Fig. 7.

Note that the expression (67) does not depend on the particular
representation of the hyperbolic 2-space, since the hyperbolic distance is
invariant. The only one requirement is to define a compatible action of 4
in the space under consideration. We use for conveniency the unit disc
representation whose center is the image of the point &\(i ) where &\ is
defined by Eq. (63) in the H2 representation. For shortness the generic ele-
ment of 4 is labelled by { independent on the representation. We param-
etrize the point {&\(i ) by its hyperbolic polar coordinates (d {

1 , :{
1) with the

origin at the point i and by ``shifted'' hyperbolic coordinates (d {
2 , :{

2) with

Fig. 7. Change of coordinates in hyperbolic Poincare� disc.
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the origin at the point &\(i ). Note that d\=d(i, &\(i ))t(k+1) ln \, and
the following ``triangle equation'' in hyperbolic 2-space holds:

cosh d {
1=cosh d {

2 cosh d\+sinh d {
2 sinh d\ cos :{

2 (B2)

In order to extract the scaling conjectured in (68), we make an approxima-
tion which consists in neglecting fluctuations of Wn(d ). In this approximation
we can sum over the generations n and the angles :jn

of the vertices within
each generation (1� jn�3_2n&1). Namely (d {

2 , :{
2)=(#n, : jn

). Thus one
has

IN (\, q)= :
N

n=1

[2 cosh #n cosh d\]&2q

_ :
3_2n&1

jn=1

(1+tanh #n tanh d\ cos :jn
)&2q (B3)

Assuming that :jn
are uniformly distributed, we get for n>>1 the following

expression

:
3_2n&1

jn=1

(1+tanh #n tanh d\ cos :jn
)&2q

r
3_2n&1

2? |
2?

0

d:
(1+tanh #n tanh d\ cos :)2q (B4)

which leads to the asymptotic behavior:

lim
n � �

2&n :
3_2n&1

jn=1

(1+tanh #n tanh d\ cos :jn
)&2q |\ � �

t{const
e2d\(2q&1�2)

for q�1�4
for q>1�4

(B5)

As justified hereafter we consider as relevant only the case q�1�4. Using
that for n>>1 and \>>1 one has 2 cosh #n cosh d\tcosh(#n+d\) we can
rewrite Eq. (B3) as follows

IN (\, q)=C\&(k+1) ln 2�# :
N

n=1

2 (n+d\ �#)[cosh(#n+d\)]&2q (B6)

Performing the shift n~ =n+d\ �# we get finally

IN (\, q)=C\&(k+1) ln 2�# I[N+(k+1)�#] ln \(1, q) (B7)
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This expression fulfills the condition (B1). We assume that this renormal-
ization also holds for the full function IN (\, q).

Let us pay attention to some contradiction between (65) and (B5)
raised by the set of successive approximations of (65) which however is
irrelevant for our final conclusions about multifractality. The equation (65)
shows that if the integral over PSL(2, R) converges, it should not depend
on \. Using the Poincare� series, the convergence of (65) occurs for q>qC.
For q>1�4 and q>qC the \-dependence shown in (B5) should then cancel
by summing over all n. The discrepancy between (65) and (B5) appears
for q # [1�4, qC]. First of all we should note that the interval [ 1

4 , qC] is
numerically small (following previous sections we have qC&q0 �2&0.4)
and is nonuniversal, i.e., depends on the particular choose of the subgroup
under consideration. Moreover, both the threshold q=1�4 and the asymp-
totics (B5) depend on the distribution of :jn

and we believe that more care-
ful treatment of angle dependence in (65) would allow disregard the region
[1�4, qC].
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